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History

» (MacWilliams, 1969)

"Codes and ideals in group algebras".
» (Hurley, 2007)

"Module codes over group rings".
» (Hurley, 2009)
"Codes from zero-divisors and units in group rings".

» (Jitman, 2010)

"Checkable Codes from group rings".



Codes Over Finite Fields

Let Fg denote the vector space of all n-tuples over the finite
field Fy.

» An (n,M) code C over Fy is a subset of Fj of size M.

» If Cis a k-dimensional vector subspace of Fg, then C will
be called [n,k] linear code over Fq. This linear code C has
g* codewords.



Generator and Parity Check Matrix of a Linear Code

» A generator matrix for an [n, k] linear code C is any k x n
matrix G whose rows form a basis for the code C. C is
written as:

C={xG:x e F}

» A parity check matrix H for an [n, k] linear code C is an
(n — k) x nmatrix defined by:

xeCsHx"=0

» Note that GHT = 0. Thus G, H are in a sense
zero-divisors.



Cyclic Codes

The class of cyclic codes is one of the most important classes
of codes. In fact almost all codes used for practical issues, like
BCH and Reed-Solomon codes, are cyclic codes. This is due to
the existence of fast encoding and decoding algorithms.
Definition

A linear code C is a cyclic code if C satisfies:

(¢1,62,...,Cn—1,Cn) € C= (Cn,Cy,...,Cn_1) € C,

n
For every ¢ € Iy
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Group Rings

Definition
Given a group G and a ring R the group ring RG is the ring
consisting of the set of all formal finite sums > . ; agg, where

Foru=7>3 4cc99:V="> 4cg P99 € RGand a € R, define:
> u+v= dee(ag + ﬁg)g,
> W= (Cgec 299)(Lnea Bnh) = Xgea(Xohea tnPh-14)9;

> au =) glaug)g.



Basic Properties of Group Rings

» The group ring RG is a ring.
» The group ring RG is a left R-module.

» When R is a field, the group ring RG is an algebra over R
and it is called group algebra.

Theorem
For a fixed listing of elements of a finite group
G =1{91,92,...,09n} there is a one-to-one correspondence

between RG and a subring of the matrix ring M,(R), given by:

n ()égr1g1 Oégr1g2 - Oégr1gn
w=> ajgi > W= : - '
i—1

Ylar Y’ 0 %gron



Group-Ring Codes

Let RG be a group ring, W a submodule of RG and u € RG.
Definition

» Aright group ring encoding is a mapping f: W — RG,
such that f(x) = xu.
» The group-ring code C generated by u relative to W is

the image of the group ring encoding: C = {xu : x € W}.

If uis a zero-divisor (resp. unit), C is called zero-divisor (resp.

unit-derived) code.
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Checkable Codes

Suppose that u is a zero-divisor in RG and let v be a
non-zero element such that uv = 0.

Let C = {xu: x € W} = Wu be a code generated by u
relative to W. Then

yeC=yv=0.

If the zero-divisor code C satisfies: y € C < yv = 0. Then
C is called checkable code. In other words,

C={yeRG:yv =0}
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Code-Checkable Group Rings

C is said to be checkable if C = {y € RG: yv = 0} for some
v € RG.

Definition (Jitman, 2010)
A group ring RG is said to be code-checkable if every ideal in
RG is a checkable code.
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Characterization of Code-Checkable Group Algebras

Let G be a finite abelian group and F be a finite field of
characteristic p.

Proposition (Jitman, 2010)

The group algebra F G is code-checkable if and only if it is a
PIR.
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Characterization of Code-Checkable Group Algebras

Let G be a finite abelian group and F be a finite field of
characteristic p.

Proposition (Jitman, 2010)

The group algebra F G is code-checkable if and only if it is a
PIR.

Theorem (Fisher and Sehgal, 1976)
The group algebra F G is a PIR if and only if a Sylow
p-subgroup of G is cyclic.
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Characterization of Code-Checkable Group Algebras

Theorem (Jitman, 2010)

Let G be a finite abelian group and F be a finite field of
characteristic p. Then the group algebra FG is code-checkable
if and only if a Sylow p-subgroup of G is cyclic.
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Definition
Let = be a finite set of primes. A finite group G is called
7’'-by-cyclic 7, if there is a normal subgroup H <1 G such that:

» |H| is coprime with each prime in .
» The quotient group G/H is cyclic and a w-group.

Example

Let m = {2}. Since A3z < S3, |As| =3 and |S3/Asz| = 2. Then S5
is ’-by-cyclic .
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Characterization of Code-Checkable Group Rings

Lemma

Let R be a finite commutative ring and G a finite group. Then
RG is code-checkable if and only if RG is a principal ideal
group ring.
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Characterization of Code-Checkable Group Rings

Lemma

Let R be a finite commutative ring and G a finite group. Then
RG is code-checkable if and only if RG is a principal ideal
group ring.

Theorem (Dorsey, 2006)

Let R be a finite semisimple ring and G a finite group. Then RG
is PIR if and only if G is ©'-by-cyclic =, where = is the set of
noninvertible primes in R.
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Characterization of Code-Checkable Group Rings

Theorem

Let G be a finite group, R a finite commutative semisimple ring
and w the set of noninvertible primes in R. Then the group ring
RG is code-checkable if and only if G is ©’-by-cyclic .
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Thank You for Your Time.
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